The smart e-bike ecosystem integrates internet of things and artificial intelligence
Tole Sutikno, Hendril Satrian Purnama
Abstract
The smart e-bike ecosystem, a combination of internet of things (IoT) and artificial intelligence (AI), has transformed urban mobility. This study aims to shed light on the transformative potential of the smart e-bike ecosystem in the context of urban transportation solutions. It includes real-time navigation, crash detection, and a smart electric drive to encourage sustainable practices and reduce reliance on traditional vehicles. The use of smart locks and parking beacon systems creates a safe and efficient urban infrastructure, encouraging e-bike use. This approach reduces traffic congestion and carbon emissions. IoT frameworks in smart e-bikes improve the user experience and contribute to urban mobility solutions. Real-time monitoring of critical parameters, such as battery levels, speed, and maintenance requirements, keeps riders informed and safe at all times. IoT-enabled features, such as navigation assistance, shorten travel times and improve the efficiency of urban transportation systems. The evolution of smart e-bikes is consistent with the anticipated improvements of 6G networks, which promise to transform communication infrastructures. AI-powered features such as real-time navigation and crash detection make rides safer. The use of smart electric drives and cloud server technology promotes a data-driven approach to transportation. Future research and development should look into the use of advanced localization techniques to improve user experience while addressing accuracy and energy consumption issues.
Keywords
Artificial intelligence; Internet of things; Navigation; Smart e-bike; Urban mobility