Optimizing EfficientNet for imbalanced medical image classification using grey wolf optimization
Khusnul Khotimah, Sugiyarto Surono, Aris Thobirin
Abstract
The advancement of deep learning in computer vision has result in substantial progress, particularly in image classification tasks. However, challenges arise when the model is applied to small and unbalanced datasets, such as X-ray data in medical applications. This study aims to improve the classification performance of fracture X-ray images using the EfficientNet architecture optimized with grey wolf optimization (GWO). EfficientNet was chosen for its efficiency in handling small datasets, while GWO was applied to optimize hyperparameters, including learning rate, weight decay, and dropout to improve model accuracy. Random cropping, rotation, flipping, color jittering, and random erasing, were used to expand the diversity of the dataset, and class weighting is applied to overcome class imbalance. The evaluation uses accuracy, precision, recall, and F1-score metrics. The combination of EfficientNetB0 and GWO resulted in an average 4.5% improvement in model performance over baseline methods. This approach provides benefits in developing deep learning methods for medical image classification, especially in dealing with small and imbalanced datasets.
Keywords
Augmentation; Deep learning; Hyperparameter optimization; Image classification; Imbalanced dataset